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Abstract 

The purpose of this research was to find the atmospheric mechanisms associated 

with lightning in snow and ice events.  The specific mechanisms that were examined 

were low-level wind shear, upper level divergence, surface temperature, low-level 

temperature, the -10° C level, and precipitable water.  A chi-squared dependency test 

showed the strong association of low-level wind shear to each precipitation type (snow, 

sleet/freezing rain, rain) in two separate studies.  Surface temperature appeared to have a 

relationship to lightning in all precipitation categories, while no significant relationship 

was found with upper level divergence, the -10° C level, or precipitable water.  From 

examination of the vertical soundings, temperatures above freezing are found in the low 

levels for all precipitation types meaning that different types of hydrometeors are present 

in the clouds.  The mixing of these due to the turbulent effects of low-level shear may 

explain how the thunderclouds (mostly stratiform) are charged.  In most cases, imbedded 

convection appears to be the predominant cause of lightning in snowstorms.  Graupel and 

snow pellet interaction are also believed to be mechanisms for cloud charging.  
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THE ATMOSPHERIC MECHANISMS THAT TRIGGER LIGHTNING DURING 

SNOW AND ICE EVENTS 

 

I.  Introduction 

1.1) Background 

 The mechanisms that cause lightning in snow or ice storms, otherwise known as 

thundersnow, have not been thoroughly studied.  Since most wintertime thunderstorms in 

the United States are elevated meaning they are formed over a frontal inversion (Colman 

1990a), the main emphasis will be the mechanics involved with these particular storms.  

Several scientists have studied the dynamics of winter storms, while others studied the 

electrical nature of thunderstorms.  No study has been done to examine the mesoscale 

dynamics involving the production of lightning during wintry precipitation.  Work has 

also been done to study specific cases of thundersnow or ice, particularly in Japan, but no 

broad study has been done.   In Japan, thundersnow forms mostly from the instability 

created from Siberian air masses moving over the Sea of Japan (Kitagawa 1992), which 

is a different situation compared to the Great Plains (except the Great Lakes region) of 

the United States where thundersnow is most common in the U.S.  This thesis will 

examine topics related to thundersnow, which will entail the winter storm mechanics, 

frontal circulations, the electrical nature of the wintertime clouds, and previous case 

studies of individual events. 
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1.2) Problem Statement 

 Lightning occurs at or near Air Force bases many times each year during snow or 

ice events (based on observation).  Lightning in snowstorms may seem insignificant to 

the average person, but not to the individual in charge of sensitive equipment such as 

aircraft and computers on base.  Since lightning is a costly and dangerous weather 

phenomenon, the threat of lightning strikes should be forecasted when conditions are 

favorable to protect the sensitive equipment on base, and more importantly, any 

personnel who must be outside during the storm. 

1.3) Research Objectives/Questions/Hypotheses 

1.3.1) Objectives 

1.) To find the atmospheric conditions (divergence aloft, low-level jet, etc.) 

necessary for lightning to occur during snow and/or ice events. 

2.) To find the level of the -10° C line in the cloud and determine its significance. 

3.) To locate the areas within the winter storm where lightning occurs, and where 

snow is common relative to the storm. 

1.3.2) Questions 

1.) What is different between a thundercloud that produces snow and one that 

produces rain? 

2.) What is happening in a mesoscale snow storm to produce the strong lift necessary 

to create a strong electrical charge separation? 

3.) What is the significance of the -10° C level within the thundercloud? 
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4.) What is the significance of graupel or snow pellets interaction on charge 

separation? 

5.) What is the difference between a cloud that produces lightning while snow is 

falling versus a cloud that does not produce lighting while snow is falling? 

6.) Why is the average peak of the temperature inversion above the surface during 

thundersnow events above freezing? 

1.4) Research Focus 

 The focus of this thesis will be on the mechanisms involved with the atmospheric 

conditions conducive to thundersnow.  Since data were only used from synoptic charts 

and radar data, the focus can only be on the large-scale features of storms.  An attempt 

will be made to find some of the smaller scale conditions, but again, the focus will be on 

the large-scale phenomenon. 

1.5) Assumptions/Limitations 

Due to the lack of completely accurate data, the following are assumed: 

1.) The flashes observed in the lightning data are assumed to be cloud to ground 

flashes.  Since the flashes are occurring from low clouds during wintertime 

thunderstorms, some cloud-to-cloud and intra-cloud flashes may be recorded in 

the data set. 

2.) The wind, temperature, and surface analysis data on synoptic charts are 

considered accurate.  Because some upper-air observations are recorded from 

balloon measurements, the position of the wind direction and wind speed will not 

be directly over the observed station.   
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3.) The locations of the lightning flashes in the lightning data are considered to be 

accurate.  Factors such as different localized air density pockets (thermals) and 

ducting may slightly change the time of arrival of the electromagnetic pulse 

towards different sensors.  This should only inhibit the precise location of the 

flash by less than one mile, which is insignificant for a mesoscale synopsis, but 

for a microscale study could be detrimental. 

4.) The upper-air processes are estimated for thundersnow occurrences between 

observational readings.  Since many cases did not occur within an hour of the 00Z 

and 12Z sounding times, interpolating the time of occurrence with the previous 

and post occurrence charts will give an approximation of winds and processes.  

With this, the storm’s fronts and low pressure centers are assumed to move 

concurrent with the radar and satellite information, so calculating the winds can 

be done assuming that the processes will be the same as the storm moves over the 

area. 

The limiting factors of this thesis are as follows: 

1.) The limited availability of data is the number one inhibitor of this thesis.  Because 

of the numerous small-scale errors, the exact nature of the microscale processes 

cannot be found with the synoptic data.  Because no equipment is available for 

measuring cloud features, microscale features cannot be found.  However, a 

hypothesis of the mesoscale conditions present during thundersnow can be 

formed based on the synoptic data. 

2.) Since thundersnow is a large-scale problem, only a fraction of the problem can be 

analyzed and studied by this work.   
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3.) The knowledge of the nature of electrical storms is still not completely 

understood.  This lack of support works against this thesis in that proving 

something involving the electrical nature of the storm will be difficult, if not 

impossible with no equipment or source of data for the electrical attributes of the 

storms (except location, current strength, and polarity of the flashes).   

1.6) Preview 

 This thesis examines the synoptic atmospheric conditions present when lightning 

occurs in snow and/or ice events.  Previous work relating to wintertime thunderstorms, 

electrical cloud structure, and strong convective dynamics from other scientists will be 

examined first, followed by an overview of the methodology used.  Next are the results 

from the approaches used and the analysis of those results.  Finally, a conclusion is given 

as to whether the results are satisfactory in determining the conditions present when 

lighting occurs during snow and ice events. 
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II.  Literature Review 

 The mechanisms that cause lightning in snow or ice storms, otherwise known as 

thundersnow, have not been thoroughly studied.  Since most wintertime thunderstorms in 

the United States are elevated, meaning they are formed over a frontal inversion (Colman 

1990), the main emphasis will be the mechanics involved with these particular storms.  

Several scientists have studied the dynamics of winter storms and the electrical nature of 

them, but not the dynamics involved with lightning in the wintry precipitation.  Much 

work has also been done to study specific cases of thundersnow, but no broad study in the 

United States has been done. For example, in Japan thundersnow forms mostly from the 

instability created from Siberian air masses moving over the Sea of Japan.  This literature 

review will examine the topics related to thundersnow, which will entail the winter storm 

mechanisms, the electrical nature of the clouds, and the previous case studies relating to 

thundersnow. 

2.1) Previous Work 

2.1.1) Winter Storm Mechanisms 

For a strong winter storm to develop, certain parameters including sub-freezing 

air must be in place.  Parameters such as moisture, moisture transport, a mechanism of 

lift, and upper-level support are needed to create the strong vertical velocity and the 

higher number of hydrometeors required to cause lightning.   

First, a moisture source must be available.  The availability of moisture is key to 

not only providing a storm with the moisture to produce precipitation, but to add to the 

instability of the atmosphere.  Johnson and Downey (1976) showed that latent heat 
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release is a major factor in enhancing mass circulations and cyclogenesis.  Water vapor is 

also less dense enabling it to rise easier than dry air in its environment. 

 Next is the moisture transport mechanism.  For thundersnow and for lightning 

with freezing rain and sleet, that mechanism is the low-level jet stream (LLJ) found about 

800 meters above the ground (Bluestein 1992).  LLJs can be found ahead of fronts and 

flow parallel to them.  A LLJ has a diurnal variation that is strongest at night, which may 

help explain why thundersnow occurs more often at night and in the morning.  Colman 

(1989) showed that 635 of 1093 (58%) elevated thunderstorm cases studied occurred 

closer to 1200 UTC rather than 0000 UTC.  In the Plains States, the moisture is 

transported from the Gulf of Mexico.  Moisture is transported from the Great Lakes and 

Gulf of Mexico in the Northern Plains and Great Lakes region.  Along the Eastern 

Seaboard, the moisture is brought in from the Atlantic Ocean. 

 Next is the lifting mechanism.  This is typically a frontal boundary or surface 

wind shift for lightning with wintry precipitation (to be shown in this thesis).  As the LLJ 

or low-level flow flows over the cold air entrenched at the surface, the flow along the 

surface of the cold air mass forces the moisture the LLJ carries upward creating lift for 

cloud development.  Along the East Coast of the United States and the coastline of the 

Great Lakes, a phenomenon called the coastal front develops.  Bjerknes and Solberg 

(1921) proposed that surface convergence due to frictional differences of land and sea 

helps to enhance this front.  The coastal front acts like a warm front oriented tens of 

kilometers inland and parallel to the coastline.  The coastal frontal boundary sends the 

easterly low-level flow coming off the Atlantic (for the East Coast of the United States) 

up and over the cool air entrenched to the west of the wind shift. 
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Finally, upper tropospheric support aids in vertical development of clouds.  This 

support can be in the form of a jet streak circulation as seen in Figure 1 (Kocin and 

Ucellini 1991) or a divergent mechanism like diffluence or speed divergence.  When 

coupling the upward vertical motion derived from upper tropospheric support with the 

upward vertical motion on the backside of the rotating, ascending LLJ, a moist parcel 

would be allowed to rise. 

 

 

Figure 1.  Jet streak positioning for Uccelini’s proposed jet streak circulation.  The shaded parts of the jet 
streaks indicate rising motion from the circulation.  The X on the figure marks the area where the influence 
of rising air due to both jet streak circulations is present (after Kocin and Ucellini 1991). 
 
 
 In conclusion, moisture, moisture transportation, a lifting mechanism, and upper-

level support are needed to develop a strong winter storm.  Snow and ice can be created 

by a combination of these conditions, but heavy snow from a mid-latitude cyclone needs 

all of these. 
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2.1.2) Frontal Circulation 

Emanuel (1985) studied frontal circulations with small moist symmetric 

instability.  He found the circulations to have a strong, concentrated sloping updraft that 

occurs slightly to the warm side of the region of maximum geostrophic compression of 

the isotherms (in other words, slightly to the warm side of the maximum temperature 

gradient).  He also suggests the effects of melting or evaporation of the falling 

precipitation, in that they likely occur in the downdraft below the 0 m/s vertical velocity 

surface, thus modifying the solution in the direction of a stronger downdraft.  However, 

in terms of frozen precipitation, evaporation and melting would likely be a less 

significant effect because latent heat exchange is minimal.  He also noted that when 

potential vorticity was decreased, the slope on the updraft side of the circulation 

deepened, thus updraft speed increased (Figure 2). Finally, he suggests that condensation 

appears to rapidly sharpen the potential vorticity gradient. 

 

Figure 2.  The cross-front circulations in the presence of low potential vorticity (0.01) (left side), and 
uniform potential vorticity (1) (right side).  The heavy solid line denotes X=constant, where X=x+Vg/f and 
x is the coordinate orthogonal to the isotherms, Vg is the geostrophic wind along isotherms, and f is the 
coriolis paramter.  (from Emanuel 1985). 
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Sanders and Bosart (1985) studied the mesoscale structure of a snowstorm in the 

Northeastern United States.  Frontogenetical forcing and symmetric instability were 

proposed as possible explanations of the intense snow bands that form.  They found a 

prominent circulation below 500 mb, with a maximum vertical velocity greater that 12 

m/s.  They also noted that the dividing line (0 m/s line) sloped toward the northwest from 

940 mb near Cape Hattaras, NC to 700 mb between Washington, D.C. and Pittsburgh, 

PA.  Another important aspect to note is that updraft speeds were near 4 m/s above the 

500 mb surface.  Finally, they note that there was an intense tranverse frontal circulation 

below the 500 mb level that showed pronounced lower tropospheric confluence. 

 

2.1.2) Electrical Nature 

 Wintertime thunderstorms tend to have a similar electrical structure as a 

summertime thunderstorm (Magono 1980).  Although the clouds may be as shallow as 

5000 meters, they still produce lightning and have been characterized by Takeuchi et al.. 

(1978) to have higher lightning peak discharge currents than in summer storms and 

produce a high percentage of positive discharges to the ground.  The different heights of 

different types of hydrometeors make it more challenging to examine the wintertime 

thunderstorm.  Magono (1980) found that winter clouds have nearly the same polarity as 

summer clouds, but with the negative charge layer at a lower height for wintertime 

clouds, especially when high vertical shear was present.  He also found that the negative 

charge layer existed above the radar bright band while the positive charge layer existed 

beneath it.   
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Graupel effects are very important in the charging process.  Graupel is defined as 

“soft hail” between 2-5 millimeters in diameter that forms in a convective cloud when 

supercooled  water droplets collide and freeze on impact (Geer 1996).  Snow pellets 

(formerly called graupel) are a type of frozen precipitation consisting of soft, spherical 

(sometimes conical) particles of opaque, white ice having diameters of 2-5 millimeters 

(0.08-0.2 inches), which typically fall from a convective type cloud (Geer 1996).  Since 

snow pellets were considered graupel in the past, it is impossible to distinguish between 

graupel and snow pellets from the researchers who studied graupel effects.  So, the term 

graupel in this thesis is a general term, which includes both.  Isono et al. (1966) found 

that graupel had very little charge when it fell over the sea, but was charged well inland 

with both polarities.  He concluded that fewer ice crystals over the sea meant fewer 

collisions in the clouds, thus reduced charge exchange.  Simpson (1909) noted that 

lightning occurred on most days when graupel was mixed with snow.  Takahashi (1997) 

found that graupel at heights where temperatures were less than -10° C had mostly 

negative charge while Fukao (1991) concluded that lightning was associated with the 

contact and mixing of graupel and ice crystals or snowflakes.  Takahashi (1984) 

suggested that the positively charged graupel below the -10° C level plays a critical role 

in the accumulation of the large negative space charge at that level. 

Takahashi also shows how the strong electric charge separates through the two 

major charging stages in the cloud.  In the first stage near the top of the cloud (-30° C) 

large space charges accumulate because of gravitational separation between negatively 

charged graupel and positively charged snow crystals (Figure 3).  The next stage occurs 

near the  -10° C level in the mature stage of the thunderstorm life cycle.  In this stage, 
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negatively charged falling graupel combines with negatively charged upward moving 

snow crystals to enhance the negative space charge accumulation.  Positive charging of 

graupel below the -10° C line is the critical process in negative space charge 

accumulation at that level.  His work in 1999 showed that graupel concentrations of one 

per liter of air and an average space charge on the precipitation particles of a few tenths 

of a picocoulomb were sufficient to produce lightning.  He also noted that riming 

electrification was the primary charge separation process.  His work then showed 

 

Figure 3.  Cloud model of charge structure with graupel (hexagons) and ice crystals (triangles) (after 
Takahashi 1999).  The two stages of cloud charging are denoted in Roman numerals and the temperature 
levels are in Celsius. 
 
 

that the most active particle charging process occurred around the -20° C level, and that 

graupel had a charge reversal at about the -11° C level as seen in Figure 4.  It is important 
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to note that the wintertime clouds he studied were in Japan, where the effects from the 

Sea of Japan, similar to lake-effect snow in the Great Lakes area, differ from those found 

within the interior of the United States in terms of a convective source for cloud 

formation.  However, the effects of graupel interaction should be the same since internal 

cloud processes (especially with space charging) should be similar. 

 

Figure 4.  Charge on graupel and total net charge with height (after Takahashi 1999). 
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The fall speeds of particles have an influence on the charging process.  Many 

scientists have found that larger snowflakes have faster fall speeds.  The faster falling 

snowflakes collide with smaller ice particles and snowflakes causing a higher collision 

rate.  The melting layer possesses a heterogeneous group of fall speeds, which may aid in 

the charging process.  Graupel interaction appears to play a pivotal role in the charging 

process since graupel are large and have faster fall speeds. 

In conclusion, graupel interaction may be the most important influence in cloud 

electrification for thundersnow.  Simpson’s work in 1909 showed that lightning occurred 

most of the time when graupel was falling with snow.  The analysis and results of this 

thesis will help to show why and how graupel fits into the thundersnow and ice with 

lightning processes. 

2.1.3) Previous Case Studies 

Holle et al. (1998) developed a chart that showed all occurrences of thunder at 

certain temperatures with the accompanying surface precipitation/conditions.  Their study 

included approximately 80% of all hourly observations from 1982-1990 for 211 stations 

in the 48 conterminous states.  They found 458 hours with thunder and some form of 

wintry precipitation (averages approximately 51 per year).  They showed thunder 

maximums in the Midwest from Missouri to SE Nebraska down to the panhandle of 

Texas, Utah, and the Great Lakes (Wisconsin and the Upper Peninsula of Michigan) as 

shown in Figure 5.  In addition, Table 1 lists their categorizations of station reports. 



  15

 
 
Figure 5.  Number of hours reported with thunder and a surface temperature at or below freezing for a nine 
year period  (after Holle et al. 1998). 
 
 

Table 1.  Categorized thunder reports and surface temperatures in Celsius for a 
nine year period from Holle et al. (1998). 

 
Wx Condition <=-5° C -5°C to 0° C 0° to +5° C +5° C to+10° C 
Light Rain 0 0 643 2567 
Moderate Rain 0 0 174 788 
Heavy Rain 0 0 57 226 
Drizzle 0 0 5 11 
Light Snow 6 47 81 1 
Moderate Snow 6 25 16 1 
Heavy Snow 13 34 7 0 
Light Sleet 1 6 10 1 
Moderate Sleet 2 2 2 0 
Freezing Rain 1 46 2 0 
Mixed Precip. 2 38 92 26 
Other 2 7 35 62 
Thunder Only 0 7 83 423 
All Hours total 33 212 1207 4106 
(note: Bolded numbers represent the highest frequency of occurrences in each 
temperature category.  Mixed precipitation refers to a combination of more than one type 
of precipitation except hail.  Others refer to non-precipitating weather events such as fog 
and haze.) 
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No station observed thunder simultaneously with only moderate or heavy freezing 

rain, freezing drizzle, heavy sleet, or hail alone.  However, hail was reported with thunder 

and some form of precipitation for 68 hours.  Mixed precipitation refers to a combination 

of more than one type of precipitation except hail.  Others refer to non-precipitating 

weather events such as fog and haze. 

 From their work, they showed that snow is the most common precipitation with 

thunder when temperatures are below freezing at the surface, while rain is the most 

common form for temperatures above freezing at the surface.  Another interesting aspect 

to note is that 0.6% of all thunder events at or below 10° C are below -5° C, while only 

4.4% of all thunder events below 10° C are below freezing.   

Holle and Watson (1994) also studied lightning during two winter precipitation 

events and found that 59% of all flashes were positive flashes for the 10 Jan 94 case and 

29% were positive flashes (52% during the first 4 hours) for the 16 Jan 94 case.  They 

concluded that the positive flashes occurred more often on the northeast ends of 

precipitation lines in the Northern Hemisphere. 

Curran and Pearson (1971) found the average of 76 soundings for thundersnow 

occurrences.  The average showed an inversion around 800 mb with a magnitude of 

temperature and dew point temperature above 32° F as shown in Figure 6.  These 76 

reports came from the locations shown in Figure 8.   
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Figure 6.  Average temperature sounding taken from 76 thundersnow events (after Curran and Pearson 
1971). 
 

 

Colman (1990a), who studied elevated thunderstorms above a front’s surface in 

environments without CAPE (convective potential available energy), along with Holle et 

al. (1998), and Curran and Pearson (1971) work showed a maximum of thundersnow 

occurrences for the U.S. in the Midwest.   

Another example of a vertical sounding pertaining to thunder with ice comes from 

Holle and Watson (1996) as seen in Figure 7. 
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Figure 7.  Vertical soundings for a freezing rain with thunder event at Monet, Missouri on 10 January 1994.  
The sounding on the left is for 0000 UTC and the one on the right is for 1200 UTC.  The lightning occurred 
from 1003 to 1340 UTC (from Holle and Watson 1996). 
 

 

 

 
Figure 8.  The locations of the 76 vertical soundings used in Curran and Pearson’s (1971) average 
soundings for thundersnow (from Curran and Pearson 1971). 
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Another major factor in assuming that most thundersnow occurrences in the U.S. 

are associated with fronts is that nearly all thunderstorms East of The Rockies and North 

of Florida in the winter are elevated (Colman 1990a).  Colman also found that a diurnal 

variation exists in winter thunderstorms (458 at 0000 UTC, 635 at 1200 UTC).  This 

variation shows that the low-level jet could be a major factor in the formation of 

thundersnow/ice since the LLJ is enhanced during the nighttime hours.   

In summary, previous studies have shown that the Midwest has the highest 

frequency of thundersnow occurrences.  Holle and Watson (1996) also found that a 

strong southwesterly flow, hence the LLJ, exists in the above freezing layer between 800 

mb and 700 mb with these storms.  The significance of the strong low-level flow will be 

one of the major factors in the current research. 

2.2) Summary 

 
 Low-level shear, different types of hydrometeors, and the creation of graupel may 

be the most important ingredients for thundersnow.  Physically proving these will be 

nearly impossible for this thesis since observing clouds that produce thundersnow is not 

possible.  Support can be found that low-level shear plays a role by statistically showing 

the association of shear as a factor.  Showing the presence of sub-freezing and super-

freezing air within the cloud can show the different types of hydrometeors.  Graupel, on 

the other hand, will be next to impossible to prove as a factor because it may be occurring 

in between stations or in between observations.  Since the graupel may be falling out just 

to the south of the lightning zone, it may not be reported with the thundersnow 
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observation.  Again, based on previous research and the preliminary observations in the 

current research, these two factors appear to be necessary ingredients for thundersnow. 
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III.  Methodology 

 This thesis is more qualitative than quantitative due to the lack of accurate 

numerical data and the fact that the goal of this thesis is to find the physical mechanisms 

associated to thundersnow and thunder with ice.  Some statistics are used for showing the 

dependency (chi-squared test) of certain mechanisms to lightning generation and trying to 

find a surface temperature correlation for thundersnow.  In terms of the rest of the thesis, 

most of it is qualitative in the sense that upper air maps, radar data, and visual 

comparisons are the main sources of the data analysis.  This section will examine the 

process that was used in searching for the mechanisms for thundersnow. 

3.1) Overview 

 Again, this thesis was mainly a qualitative thesis.  Since no one has done a 

comprehensive thundersnow study over land, all of the data had to be found via surface 

observations from AFCCC reports, or by searching for them on over two-dozen compact 

discs full of 100’s of charts each.  Though a lengthy process, finding the cases was easy 

once a strategy was developed.  In terms of choosing the mechanisms to be studied, a 

hypothesis for the main physical mechanisms for vertical velocity had to be found.  With 

the belief that the low-level jet stream or low-level flow had something to do with 

thundersnow, several hypotheses were made.  When noticing that that the difference 

between the low-level flow and the surface wind was low-level wind shear, the idea for 

categorizing shear took place.  After reading Kocin and Uccelleni’s (1990) work and 

seeing a pattern of diffluence at upper-levels, the idea then was to classify diffluence.  

After noticing speed divergence, and in some cases, the presence of  Uccellini’s jet 
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stream circulations, the plan switched to overall divergence instead of diffluence.  When 

noticing that most events occurred near the rain-snow line, the idea to examine 

temperature effects was added.  Finally, other less comprehensive tests involving the 

precipitable water values and the vertical soundings were done to see any other possible 

correlations of physical processes. 

3.2) Data 

 Most of the data used in this study are in the form of daily lightning plots, surface 

observations, radar images, the surface analyses, upper air analyses, radar depictions, 

skew-T maps, and precipitable water maps.  The process of finding the data and 

analyzing it was the most tedious part of this thesis. 

3.2.1) Collecting the Data 

 The first part in this process was developing a plan for gathering occurrences of 

thundersnow.  Since several influences from terrestrial effects are likely, the sites for 

which the data were to be collected was divided into three regions: East Coast, Midwest, 

and Rocky Mountains.  From these regions (A-Atlantic region, M-Midwest region, Mtns-

Rocky Mountains), bases from each were chosen to get a good representation for each 

region.  The Air Force bases selected were Hanscom (A), Andrews(A), McGuire(A), 

Wright-Patterson(M), Scott(M), Offutt(M), Tinker(M), Grand Forks(M), Hill(Mtns), and 

Peterson(Mtns).  After deciding which bases to use, AFCCC (Air Force Combat 

Climatology Center) searched for all observations at these locations of thunder with a 

temperature at or below 37° F with the hope of finding at least 20 occurrences (time and 

date) of thundersnow and ice with thunder.  The idea was also to gather a few cases of 
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rain at low temperatures to see if there is a difference in the lightning mechanisms 

between the different precipitation types.  After gathering the times and dates, the next 

step was to use them to gather the charts and radar data from websites 

<weather.unisys.com/archive> and <www4.ncdc.noaa.gov/cgi-

win/wwcgi.dll?wwnexrad~images2>.  AFCCC also sent 72 compact discs (24 months) 

from NCDC (National Climatic Data Center) which had the surface maps, upper air 

charts, composite moisture/precipitable water charts, and radar summaries.  Because 

these CDs had more and better quality surface analyses than those archived at the 

website, they were used as the predominant source of information (the website was used 

only when the 00 UTC or 12 UTC surface chart was missing). 

 After obtaining the synoptic data, the next task was to write a computer program 

(Appendix A) to plot the cloud-to-ground lightning strikes.  These plots were used to find 

more cases of thundersnow and lightning during freezing precipitation events.  By 

examining the location of the lightning strikes across the country each day, any day that 

had lightning in snow prone areas was noted.  Next, the synoptic charts and radar mosaics 

were examined for those days in conjunction with the locations of the lightning.  From 

examining the temperatures and precipitation types on the surface analyses for the 

lightning area using the radar loop as the time basis for when the lightning happened, the 

cases were then selected for future study.  Figure 9 shows an example of the lightning 

plots. 
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Figure 9.  A daily lightning plot used for disseminating locations of cloud-to-ground flashes (asterisk 
denotes negative flash, plus sign denotes positive flash).  The lighter shades indicate dense regions of 
lightning strikes.  This example is the lightning data for 26 January 1996. 
 
 

 To find the no lightning cases, every 00 UTC and 12 UTC surface synoptic chart 

was scanned in the location of the storm where thundersnow is prone (see Figure 12 in 
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Chapter 4 for the prone areas) and for stations reporting moderate or heavy precipitation 

within the thundersnow-prone zone.  The only difficulty with this process was 

determining the intensity of freezing rain since it has only one surface symbol for all 

intensities (except for freezing drizzle).  For those cases, the radar loop was used to judge 

the intensity.  The times and dates were then recorded for future study. 

 For the temperature correlation, more data were requested from AFCCC to 

include the temperature at the surface, dew point, wind, and remarks.  Since many of 

these are from before 1995, only a few (the occurrences after 1994) were added to the 

low-level shear study. 

 Finally, the skew-T’s were examined for any possible correlation of the -10º C 

level and to examine the intensity of the low-level temperature inversion.  Since many 

processes can occur over a few hours that could greatly change the vertical sounding, 

only those within an hour were taken.  Also, since low-level horizontal temperature 

gradients along fronts tend to be strong, only the sites that archived vertical soundings 

were used. 

3.2.2) Analyzing the data 

 Once all of the data were collected, they were studied for any synoptic patterns.  

One of the first patterns noticed was a strong area of convection in certain locations of the 

storm in the form of embedded thunderstorms within stratiform precipitation (Appendix 

C).  Finding the causes for this convection should help to find the mechanisms for 

thundersnow.  After reading a few more articles about processes in major winter storms, 

the hypotheses began to unfold as evidence for them were presented.  The articles and 
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theories also stimulated a few ideas as to some possible mechanisms, and a synthesis of 

the knowledge unfolded.   

 The next tasks were to examine the divergence at the 300 mb level and the 

vertical wind shear between the surface wind and the 850 mb wind above the surface 

observation.  Every 850 mb and 300 mb chart was examined for the intensities of low-

level shear and upper-level divergence.  The shear for each case was calculated 

empirically by taking the velocity difference from the surface wind and the 850 mb level 

wind as seen in Figure 10, then classified into weak (<25 knots), moderate (25-39 knots) 

and strong (40+ knots) categories.   

 

 
 
Figure 10.  Empirically calculating low-level wind shear.  By subtracting the component of the surface 
wind that is in the same direction as the 850 mb wind to the 850 mb wind, a close approximation to the 
shear is determined.  In this case on the left side, the 10 kt wind at the surface has a component in the 850 
mb wind’s direction of about 7 kts.  If the surface wind opposes the direction as seen on the right side, the 
component is added since subtracting a negative number is equal to adding a positive number. 
 
 
 

To estimate a divergence, a ratio proportionate to divergence was calculated using 

the differences in velocity both along the path and normal to the path.  Divergence is 

measured in units of 1/second.  In this study, the measurement is in knots because the 

distances between wind measurements were not calculated (the distances between wind 

measurements are close enough to each other east of the Rocky Mountains to assume 
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them approximately the same).  Therefore, a measurement proportional to divergence, 

which be called divergence for the sake of this study, will be approximated by adding the 

components of speed change in the direction of flow and the speed change normal to the 

flow (Figure 11).  The divergence cases were calculated empirically by finding the 

diffluent part and speed divergent part of the 300 mb (shown in Figure 13) wind then 

classified in to weak (<20 knots over a 250 km radius), moderate (20-29 knots over a 250 

km radius), and strong (30+ over a 250 km radius) categories.  The major difficulty 

associated with classifying divergence is the subjectivity imposed by estimating the 

intensity of divergence and the distance between observations.  Mechanisms like jet 

streak circulations, curvature around a trough, and entrance regions to jet streaks 

contribute to divergence.  Any case that observed one of these but did not have 20+ knots 

of divergence over a 250 km radius (roughly the distance between observations) was 

classified into the weak category. 

 After concluding that the mountainous regions have other local terrestrial factors 

that help to create strong lift, all cases in the mountainous areas were discarded.  Also, 

any case with uncertainty as to when it produced lightning (e.g. if heavy rain moved 

through a lightning area in the morning but changed to snow in the afternoon, or if the 

temperature was above 37 degrees during the questionable period) was thrown out.  
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Figure 11.  Empirically calculating the divergence for this study (in knots for this study).  The left side 
shows the diffluent part where the divergent speed is approximately calculated by trigonometry by finding 
the component normal to the main flow.  The speed divergence (middle) was calculated by the difference in 
wind speed in the same direction as the mean flow.  The right side shows the divergence associated with a 
jet streak and the divergence of the jet streak circulations.  The calculation for a jet streak circulation was 
not possible. 
 
 
  With so many charts gathered for each case, the idea was then to superimpose 

everything onto one map for each case.  This would have helped to show the processes 

involved with each storm, but after determining that superimposing hundreds of maps 

and charts would not be worth the time invested considering their significance toward the 

solution, the idea to draw the generalized storm structures was used.  With a strong 

similarity shown between the storm structures in most of the cases, the main causes for 

thundersnow/ice over land can be better studied.  When learning about a website that 

shows the vertical soundings for the cases, the focus then was to see a few examples of 

vertical profiles and support Curran and Pearson’s (1971) study.   

3.2.3) False Alarm Cases 

Since thundersnow/ice only developed within certain locations in a mesoscale 

storm, the plan for finding the false alarm cases (those cases similar in storm structure, 

but with no lightning) was fairly simple.  The radar loop (taken once every 24 hours) over 



  29

the winter months helped to show most meso-scale systems throughout the winter 

months.  To find the most cases possible, each 00 UTC and 12 UTC surface map was 

analyzed to find any moderate or heavy precipitation events.  From finding several 

storms, a good estimation of the occurrences of thundersnow/ice verses non-occurrences 

with similar conditions should be found.  These false alarm cases were categorized 

according to their structure and the precipitation type that occurred in the areas within the 

storm similar to the lightning cases.   

3.2.4) Analyzing the Results 

 Once all of the cases were found, they were all categorized by their low-level 

wind shear intensity, divergence intensity, and storm’s mesoscale structure.  The 

lightning cases were then compared to the non-lightning cases using a chi-squared 

dependency test.  This test shows the dependency of lightning to wind shear or 

divergence.  The only limit to this test is the small number of cases. 

 In order to alleviate the problem of having too few cases, and in order to verify 

the results, additional months were thoroughly examined into a follow up study for more 

cases of thundersnow, ice with thunder, and moderate/heavy snow/ice events without 

lightning.  A second chi-squared test was done on the new cases to compare the results to 

the first data set to support the results of the first test.  The tests should have similar 

results between the two of them if the data is consistent.  If the tests have different 

results, then questions would arise about the data consistency (a bogus set of data).  After 

the comparison was done, the data sets were combined for the final tally and the final chi-

squared test was done. 
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 To show the significance of the surface temperature to lightning generation, the 

raw surface observation data from AFCCC were categorized into temperature categories 

of 1 degree Fahrenheit bins.  This study was done with the belief that different types of 

hydrometeors interact within the cloud (i.e., the cloud’s particles are not all snow or ice 

crystals) to produce the charge separation necessary for lightning.  This test could also 

show that the temperature is close to or at freezing symbolizing the close proximity of the 

rain-snow line and the presence of the melting layer, thus, different hydrometeors.   

3.3) Other Work Done 

 To check some other physical mechanisms in the cloud that may correlate to 

lightning, the significance of the -10° C level was examined.  In typical air mass 

thunderstorms, that level marks the average temperature where cloud charge reverses and 

where graupel’s charge reverses.  For a winter thunderstorm, this may not be the case 

since some storms’ cloud tops are near or below that level.  A small sample of vertical 

temperature soundings taken from the webite <www-

das.uwyo.edu/upperair/sounding.html> were recorded and examined to find the pressure 

level at -10° C. The idea was then dropped since only a few cases would be able to be 

examined at or near the 00 UTC and 12 UTC times to show any correlation of the -10° C 

level.  Also, Curran and Pearson’s (1971) average sounding had the -10° C temperature at 

the 635 mb level, and since they had the average of 76 cases of thundersnow  (well more 

than the ten soundings used for this study), pursuing the -10° C level study would have 

wasted valuable time in this study. 
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 The idea of available moisture was also studied as one of the possibilities for a 

thundersnow/ice mechanism.  Since more moisture means more or larger particles, the 

idea had some relevance to this topic.  The composite moisture/precipitable water maps 

in the compact discs were examined to see the difference in available moisture of 

lightning producing and non-lightning events.  A chi-square test was done to check for 

dependency. 

3.4) Summary 

 This thesis was mainly a qualitative thesis.  Since no one has done a 

comprehensive thundersnow study over land, all of the data had to be found via surface 

observations from AFCCC reports or by searching for them on 27 compact discs full of 

100’s of charts each.  Though a lengthy process, finding the cases was easy once the 

strategy was developed.  After scanning over 1000 maps, patterns were noticed and 

recorded.  The results found from the data analysis are found in the next chapter. 
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IV.  Results and Analysis 

In order to show a synoptic pattern, the data were examined and categorized into 

bins of low-level wind shear intensity, upper-level divergence intensity, and a 

combination of both.  Other aspects examined in this section are the temperature 

correlation to lightning, the vertical soundings of some cases, and the examination of the 

precipitable water.  The low-level shear study was done in two separate studies (Trial 1 

and Trail 2).  The data used in Trial 1 were based on the months of data used early in the 

study, while the data used for Trial 2 were based on the monthly data obtained later in the 

study (see Tables 4 and 9 for the months for each trial).  The divergence study was 

included in the first Trial because it was done with the monthly data used in the Trial 1 

low-level shear study. 

4.1) Low-level Shear and Upper-level Divergence 

4.1.1) Trial 1 

The data from Trial 1 is classified into low-level shear and upper-level divergence 

categories.  The frequency distribution is shown in Table 2. 

From Table 2, there appears to be a difference in the shear categories between the 

lightning and no-lightning cases.  The lightning producing cases for each fall into the 

strong categories more frequently than the weak categories, whereas, the non-lightning 

cases have more in the weak categories than the strong.  With the divergence cases, there 

appears to be a difference in that the non-lightning producing cases have higher 

percentages of weak divergence with each precipitation type.  Though, with many 
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complications in calculating the divergence accurately have forced the author to 

discontinue the research in the divergence aspect of this thesis.  In Table 3, the 

combination of the low-level wind shear and upper-level divergence for each case is 

categorized. 

 
Table 2.  Categorized low-level shear and upper-level divergence data from Trial 1. 

 
 Wk div 

(0-20 kts) 
Mod div 
20-29 kts 

Stg div 
(30+ kts) 

Wk shear 
(0-25 kts) 

Mod shear 
25-39 kts 

Stg shear 
(40+ kts) 

Snow w/ 
lightning 

3 7 3 0 7 6 

Ice w/ 
lightning 

10 9 3 1 9 12 

Rain w/ 
lightning 

7 10 8 2 11 12 

Snow wo/ 
lightning 

21 6 6 23 8 2 

Ice wo/  
lightning 

13 6 0 7 9 3 

Rain wo/ 
lightning 

8 4 4 6 3 7 

 

 

Table 3.  Combined low-level shear and upper-level divergence for Trial 1. 
 

 Wk div + 
Wk Shear 

Wk Div + 
Mo Shear 

Wk Div + 
St Shear 

Mo Div + 
Wk Shear 

Mo Div + 
Mo Shear 

Mo Div + 
St Shear 

St Div + 
Wk Shear 

St Div + 
Mo Shear 

St Div + 
St Shear 

Snow w/ 
Lightning 

0 2 1 0 5 2 0 0 3 
Ice w/ 
Lightning 

1 4 5 0 5 4 0 0 3 
Rain w/ 
Lightning 

0 6 1 2 3 5 0 2 6 
Snow wo/ 
Lightning 

15 5 1 5 1 0 3 2 1 
Ice wo/ 
Lightning 

5 6 2 2 3 1 0 0 0 
Rain wo/ 
Lightning 

4 2 1 1 1 3 1 1 2 
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The data do not appear to show a direct correlation between shear and divergence, 

but factors such as strong, mature storms having larger magnitude features (i.e., both 

shear and divergence will be strong) than clipper systems (which tend to have little 

upper-level support) may skew the data.  The 14 cases in the weak-weak category for 

snow show that these storms may be small clipper systems, which would skew the 

results. 

The following table (Table 4) represents the shear(weak <25 knots, moderate 25-

40 knots, strong >40 knots), divergence (weak <20 knots difference over 250 km, 

moderate 20-30, strong >30) and storm type classifications for each event that had at least 

two cloud-to-ground flashes of lightning.  Refer to Appendix B for state abbreviations. 

 

Table 4.  Categorized data for the lightning producing events for Trial 1. 
 

Date Location Precip Type Shear Divergence Storm Type 
6 JAN 95 AR Ice Strong Weak 2 
17 JAN 95 MN Snow Strong Moderate 3,5 
19 JAN 95 MO Snow Moderate Moderate 5 
28 JAN 95 MO Rain Moderate Strong 3 
4 FEB 95 NJ Snow Strong Strong 5 
14 FEB 95 AR Ice Strong Moderate 3 
24 FEB 95 WV Rain Moderate Weak 4 
26 FEB 95 IA Ice Strong Weak 3 
10 APR 95 NE Ice Strong Strong 3,5 
10 APR 95 MI Snow Strong Moderate 3 
1-2 FEB 96 AR Ice Strong Moderate 3,4 
23 FEB 96 MI Ice Strong Strong 3 
26 FEB 96 MN-WI Ice Moderate Weak 3 
27 FEB 96 OK-KS Ice Moderate Weak 4 
3 MAR 96 WV Snow Moderate Weak 4 
5 MAR 96 IA Rain Strong Strong 3 
7 MAR 96 KY Rain Moderate Weak 3,4 
21 MAR 96 MN Ice Strong Weak 3 
25 MAR 96 IA Rain Strong Strong 3 
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Table 4 (cont.) 
 

Date Location Precip Type Shear Divergence Storm Type 
27 MAR 96 TX Ice Moderate Moderate None 
8 DEC 96 ME Rain Strong Moderate 2 
11 DEC 96 IN Rain Strong Moderate 3 
14 DEC 96 SD Snow Moderate Moderate 3 
15 DEC 96 MN Snow Moderate Moderate 1 
27 JAN 97 MO Ice Strong Weak 3 
26 OCT 97 NE Snow Strong Strong 1 
9 DEC 97 KS Rain Moderate Weak 1 
9 DEC 97 TN Ice Weak Moderate 3 
10 DEC 97 MO Rain Moderate Weak 1,2 
24 DEC 97 MO Rain Moderate Strong 5 
25 DEC 97 ME Ice Strong Weak 2 
30 DEC 97 NJ Rain Moderate Moderate 5 
4 JAN 98 OK Rain Strong Strong 4 
5 JAN 98 OK Ice Moderate Moderate 4 
9 JAN 98 VT Ice Moderate Moderate 2 
15 JAN 98 MO Rain Moderate Moderate 4 
22 JAN 98 OK Rain Weak Moderate 4 
25 FEB 98 ND Rain and GR Strong Strong 1 
1 JAN 99 MO Ice Moderate Moderate 3 
2 JAN 99 AR Rain Strong Strong 3,5 
3 JAN 99 NY Ice Strong Strong 1 
3 JAN 99 NC Ice Strong Moderate 2 
8 JAN 99 AR Ice Strong Weak 3,4 
13 JAN 99 MO Ice Weak Weak 3,4 
22 JAN 99 IL Rain Moderate Moderate 3 
29 JAN 99 TX Snow Moderate Moderate 3,5 
31 JAN 99 MO Rain Strong Strong 2 
8 FEB 99 MN Ice Moderate Moderate 2 
11 FEB 99 NE Rain + SN Strong Moderate 4 
11 FEB 99 IA Snow + ZR Strong Weak 5,4 
26 FEB 99 IA Rain Moderate Weak 2 
27 FEB 99 OH Rain Moderate Weak 2 
6 MAR 99 MI Snow Moderate Weak 3 
7 MAR 99 KS Ice Moderate Weak 3 
8 MAR 99 NE Snow Strong Strong 1,2 
12 MAR 99 TX Rain Strong Moderate 5 
14 MAR 99 MO Snow Moderate Moderate 1 
15 MAR 99 VA Rain Moderate Weak 2 
22 MAR 99 VT Rain Strong Moderate 2 
23 MAR 99 MO Rain Strong Weak 5 
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4.1.2) Storm Types Observed in Trial 1 

After noticing a distinct pattern within the cases of thundersnow/ice of 

thunderstorm location relative to the storm system, the location of each thunderstorm was 

classified into one of the following categories seen in Figure 13. 

 

  

  

 

 

 
Figure 12.  The five different storm structures observed for thundersnow or ice with thunder.  The shaded 
zone denotes the area where the thunderstorm(s) occurred.  The thick arrow represents the 850 mb wind, 
while the wind barbs indicate surface wind.  The solid lines in Types One and Two denote a surface wind 
shift of some type. 



  37

 Almost every occurrence of thundersnow or ice occurred in one of these 

categories in Figure 12.  The similarity between these five cases is that the occurrence 

happened just downwind (relative to the low-level flow) on the cold side of a surface 

windshift.  Some cases’ wind shift line was a surface trough (some labeled on the 

synoptic chart, some not labeled) instead of a warm/occluded front, but there was an anti-

cyclonic wind shift.  Most of the Type 4 events were cold fronts (anafronts) where the 

precipitation was behind the cold front (in the cold side of the front).  Some were warm 

or stationary fronts embedded along the cold front (very close to a Type 3), but were still 

labeled as a Type 4 because they did not resemble the Type 3 enough to count them as a 

Type 3. 

Table 5 represents all of the cases that had less than two lightning strikes in the 

specified location of the storm (storm type) with the similar conditions found with    

Table 4. 

 

Table 5.  Categorized data for the no-lightning cases for Trial 1. 
 

Date Location Precip Type Shear Divergence Storm Type 
1 JAN 95 NH Ice Moderate Weak 3 
7 JAN 95 ME Ice Strong Weak 3 
13 JAN 95 MN Snow Weak Weak 5 
14 JAN 95 MO Rain Strong Strong 3 
16 JAN 95 OH Rain Weak Weak 3 
21 JAN 95 ME Rain Strong Strong 3 
23 JAN 95 MS Rain Weak Weak 3 
27 JAN 95 IA Ice Weak Moderate 3 
29 JAN 95 MD Snow Weak Moderate 2 
5 FEB 95 ME Snow Strong Weak 5 
15 FEB 95 SD Snow Moderate Weak 3 
28 FEB 95 AR Ice Weak Weak 3 
3 FEB 96 KY Snow Weak Weak 5 
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Table 5 (cont.) 
 
Date Location Precip Type Shear Divergence Storm Type 
10 FEB 96 MN Ice Moderate Moderate 2 
11 FEB 96 ME Ice Strong Moderate 2 
14 FEB 96 MI Snow Weak Weak 3 
15 FEB 96 ME Snow Weak Weak 5 
16 FEB 96 MO Snow Weak Weak 4 
16 FEB 96 NY Snow Moderate Weak 3 
28 FEB 96 ME Ice Weak Weak 2 
1 DEC 96 KS Snow Weak Weak 4 
1 DEC 96 KS Snow Weak Weak 4 
3 DEC 96 IA Snow Weak Weak 5 
5 DEC 96 IA Ice Weak Weak 2 
5 DEC 96 IL, IN Snow Moderate Strong 2 
16 DEC 96 ND Snow Moderate Moderate 4 
17 DEC 96 ND Snow Weak Weak 1 
19 DEC 96 NH Rain Moderate Weak 4 
24 DEC 96 WI Snow Weak Weak 5 
28 DEC 96 IA Ice Weak Moderate 3 
30 DEC 96 MI Ice Moderate Weak 4 
31 DEC 96 IN Rain Moderate Moderate 4 
3 DEC 97 IA Snow Weak Strong 4 
6 DEC 97 ME Snow Weak Strong 1 
21 DEC 97 KS, OK Ice Moderate Moderate 1 
26 DEC 97 ME Snow Weak Moderate 1 
28 DEC 97 MD Snow Weak Moderate 5 
29 DEC 97 KY, TN Snow Weak Weak 2 
5 JAN 98 WI Ice Weak Weak 3 
15 JAN 98 IL Snow Weak Moderate 3 
15 JAN 98 MD Ice Moderate Weak 5 
21 JAN 98 IA Snow Moderate Strong 3 
24 JAN 98 PA Snow Weak Weak 3 
25 JAN 98 ME Ice Weak Weak 5 
28 JAN 98 MD Rain Moderate Weak 5 
29 JAN 98 WI Snow Weak Strong 5 
1 FEB 98 IA Rain Weak Strong 3 
12 FEB 98 ME Rain Strong Moderate 3 
19 FEB 98 ME Rain Weak Weak 1 
23 FEB 98 ND Rain Weak Weak 2 
24 FEB 98 PA Snow Weak Weak 5 
25 FEB 98 ME Ice Moderate Moderate 3 
28 FEB 98 MN Snow Weak Weak 5 
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Table 5 (cont.) 
 

Date Location Precip Type Shear Divergence Storm Type 
2 JAN 99 IN Ice Moderate Weak 3 
4 JAN 99 ME Ice Strong Weak 2 
8 JAN 99 ME Rain Strong Weak 3 
10 JAN 99 ME Snow Moderate Weak 5 
10 JAN 99 MA Rain Strong Weak 4 
14 JAN 99 OH Ice Moderate Weak 4 
16 JAN 99 ME Rain Strong Moderate 2 
18 JAN 99 ND Snow Weak Weak 1 
27 JAN 99 MN Snow Weak Moderate 3 
28 JAN 99 NC Rain Strong Moderate 5 
12 FEB 99 MN Snow Moderate Weak 5 
23 FEB 99 MO, NE Snow Moderate Weak 3 
1 MAR 99 ME Rain Weak Weak 1 
4 MAR 99 PA Snow Weak Strong 1 
9 MAR 99 OH Snow Strong Strong 1 
 

Low-level wind shear appears to be a factor for thundersnow and thunder during 

ice events.  The chi-squared test done in Table 6 solidifies the hypothesis that low-level 

wind shear is a factor (in each bin, the top number is the frequency, the bottom left 

number is the expected value, and the bottom right number is the chi-square). 

 

Table 6.  Chi-Squared distribution for the snow cases for Trial 1.  The top number 
is the frequency, the bottom left number is the expected value, and the bottom right 

number is the chi-square. 
 

 Weak Shear Moderate Shear Strong Shear Total Cases 
Snow with 
Lightning 

0 
5.74, 5.74 

7 
4.49, 1.27 

6 
2.68, 4.13 

13 

Snow without 
Lightning 

23 
9.26, 3.55 

8 
7.41, 0.78 

2 
4.32, 2.55 

33 

Total Cases 23 15 8 46 
 
Overall Chi-Square for Table 6: 20.19 
P-Value: 0.0000 
Degrees of Freedom: 2 
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The p-value of 0.0000 for Table 6 shows a strong dependency (according to a chi-

square test) between wind shear and lightning in snow events.  The only concern at this 

point is the small number of cases.  If an additional case examined was a weak-shear, 

lightning occurring event, the p-value would then be 0.0002.  If the next two cases were 

in that category, then the p-value would be 0.0005.  To be within the confidence level of 

99% (α=0.01), the next 5 cases could be weak-shear, lightning occurring events (p-value 

of 0.0064.  Even if the next 5 cases examined are in that category, low-level wind shear 

appears to be a dependent factor for lightning in snow events.  When examining what 

would happen if the next several cases were in the strong shear, no lightning category, it 

would be extremely unlikely to achieve a p-value of 0.01 or greater. 

In order to determine if there is a difference with the conditions for thundersnow 

with the conditions for thunder with ice, a dependency test of low-level shear to ice 

events with lightning was done in Table 7. 

 

Table 7.  Chi-squared distribution for the ice cases for trial 1.  The top number is 
the frequency, the bottom left number is the expected value, and the bottom right 

number is the chi-square. 
 

 Weak Shear Moderate Shear Strong Shear Total 
Ice with 
Lightning 

1 
4.29, 2.53 

9 
9.66, 0.04 

12 
8.05, 1.94 

22 

Ice without 
Lightning 

7 
3.71, 2.92 

9 
8.34, 0.05 

3 
6.95, 2.25 

19 

Total 8 18 15 41 
 
Overall Chi-Square for Table 7: 9.73 
P-Value: 0.0077 
Degrees of Freedom: 2 
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Like the snow cases, thunder with freezing rain or sleet appears to be associated 

with low-level wind shear (p-value of 0.0077).  If the next case were a weak-shear, 

lightning occurring case, then the p-value would be 0.0196.  If the next two were in that 

category, then the p-value would be 0.0386.  The only concern for this result is the low 

number of cases in Table 7 in the ice without lightning row (19).  However, the alignment 

of this sample is encouraging in that it follows the hypothesis of low-level shear as a 

factor.  Finally, a dependency test of low-level shear to rain with lightning to determine 

how shear relates to thunder with rain was done in Table 8. 

 

Table 8.  Chi-Squared distribution for the rain cases for trial 1.  The top number is 
the frequency, the bottom left number is the expected value, and the bottom right 

number is the chi-square. 
 

 Weak Shear Moderate Shear Strong Shear Total 
Rain with 
Lightning 

2 
4.29, 1.22 

11 
10.00, 0.10 

12 
11.59, 0.01 

25 

Rain without 
Lightning 

6 
1.71, 3.05 

3 
4.00, 0.25 

7 
7.41, 0.02 

16 

Total 8 14 19 41 
 
Overall Chi-Square for Table 8: 6.21 
P-value: 0.0448 
Degrees of Freedom: 2 
 
 

With a p-value of 0.0448 for Table 8, low-level wind shear is not as associated 

with thunder with rain as thunder with snow.  When using the 0.01 and 0.05 level of 

significance (99% and 95% confidence respectively), this test would reject the null 

hypothesis at a 0.01 level of significance, but would pass the 0.05 level of significance.  

Also, two events in the weak-shear with lightning category show that lightning can occur 
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without moderate or stronger low-level wind shear.  The high number of strong shear, no 

lightning cases show that either something else inhibits lightning when shear is present or 

lightning is not as dependent on shear for rain events as for snow and ice events.  Overall, 

this still shows that low-level shear is associated with lightning in rain events, it’s just not 

the sole or dependent factor. 

4.1.3) Trail 2 Low-Level Shear Study 

Since the results from the first trial for low-level shear were very successful for a 

small sample of cases, a second study for shear was done to verify the first study’s 

results.  The storm types are the same as the ones used in Trial 1.  Table 9 shows the 

classifications for the lightning producing cases. 

 

Table 9.  Categorized data for the lightning producing cases for trial 2.  Storm type 
can be seen in Figure 13. 

  
Date Location Precip Type Shear Storm Type 
2 Mar 95 TX Ice Weak 3 
4 Mar 95 SD Snow Weak 3 
5 Mar 95 NE Ice Moderate 3 
7 Mar 95 MO Rain Moderate 4 
7 Mar 95 ONT Snow Moderate 3 
9 Mar 95 VA Rain Weak 5 
25 Mar 95 IA Rain Moderate 2 
27 Mar 95 WI Snow Moderate 3 
10 Nov 95 VA Rain Strong 4 
11 Nov 95 OK Ice Moderate 4 
27 Nov 95 WI Snow Strong 3 
6 Dec 95 VT Snow Moderate 2 
19 Dec 95 MO Snow Moderate 5 
3 Jan 96 IN, OH Snow Strong 1 
8 Jan 96 PA Snow Strong 1 
12 Jan 96 NC Snow Strong 2 
12 Jan 96 PA Snow Moderate 5 
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Table 9 (cont.) 
 

Date Location Precip Type Shear Storm Type 
18 Jan 96 MN Ice Strong 3 
23 Jan 96 MO Ice Weak 3 
26 Jan 96 IA Snow Strong 3 
27 Jan 96 WI Snow Moderate 2 
16 Nov 96 MN Rain Strong 3 
16 Nov 96 NE Rain Strong 4 
23 Nov 96 NE Snow Weak 4 
29 Nov 96 KS Rain Moderate 3 
4 Jan 97 MN Snow Strong 1 
7 Jan 97 AR Rain Weak 3 
9 Jan 97 GA Rain Moderate 3 
11 Jan 97 NC Snow Strong 4 
13 Jan 97 TX Ice Moderate 3 
15 Jan 97 LA Rain Strong 4 
24 Jan 97 MO Rain Moderate 3 
27 Jan 97 MO Ice Moderate 4 
28 Jan 97 MO Snow Weak 4 
4 Feb 97 IL Rain Weak 2 
12 Feb 97 PA Snow Moderate 4 
21 Feb 97 KS Snow Moderate 5 
22 Feb 97 ME Snow Strong 3 
5 Mar 97 OK Rain Moderate 4 
6 Mar 97 OH Rain Moderate 3 
9 Mar 97 IA Rain Strong 2 
13 Mar 97 SD Ice Moderate 4 
13 Mar 97 WI Snow Moderate 3 
25 Mar 97 IA Snow Strong 3 
 

For Table 10, the storm types are the same as the ones used in Trial 1.  Table 10 

represents the non-lightning producing cases. 
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Table 10.  Categorized data for the no-lightning cases for trial 2.  Storm type can be 
seen in Figure 13. 

 
Date Location Precip Type Shear Storm Type 
9 Mar 95 ME Snow Weak 3 
17 Mar 95 NH Rain Weak 5 
20 Mar 95 WI Rain Moderate 3 
9 Nov 95 ND Ice Weak 3 
14 Nov 95 PA Rain Weak 5 
15 Nov 95 ME Rain Strong 2 
18 Nov 95 MI Rain Weak 3 
19 Nov 95 ME Rain Strong 2 
29 Nov 95 MA Snow Weak 3 
30 Nov 95 WI Ice Strong 3 
2 Dec 95 ND Ice Moderate 1 
8 Dec 95 SD Snow Weak 5 
9 Dec 95 MD Ice Strong 5 
10 Dec 95 ME Snow Moderate 2 
14 Dec 95 IA Ice Moderate 3 
14 Dec 95 MI Rain Strong 3 
16 Dec 95 PA Snow Weak 3 
18 Dec 95 KY Rain Moderate 3 
20 Dec 95 ME Snow Weak 5 
30 Dec 95 OK Ice Moderate 3 
2 Jan 96  OK Snow Moderate 5 
4 Jan 96 IA Snow Weak 3 
7 Jan 96 TN Snow Weak 5 
7 Jan 96 VA Snow Moderate 3 
9 Jan 96 ME Snow Weak 1 
10 Jan 96 ME Snow Moderate 1 
13 Jan 96 MA Ice Moderate 3 
19 Jan 96 IA Snow Weak 5 
25 Jan 96 MN Snow Weak 3 
28 Jan 96 SD Snow Moderate 3 
29 Jan 96 NE Snow Weak 3 
30 Jan 96 ME Ice Weak 3 
31 Jan 96 SC Snow Moderate 4 
31 Jan 96 ME Rain Weak 5 
13 Nov 96 KS Ice Weak 3 
17 Nov 96 ND Snow Moderate 5 
21 Nov 96 IA Snow Weak 3 
26 Nov 96 NY Ice Moderate 3 
5 Feb 97 ME Ice Strong 2 
9 Feb 97 MD Snow Weak 5 
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Table 10 (cont.) 
 

Date Location Precip Type Shear Storm Type 
14 Feb 97 VA Ice Strong 5 
16 Feb 97 IA Snow Moderate 3 
8 Dec 95 SD Snow Weak 5 
9 Dec 95 MD Ice Strong 5 
10 Dec 95 ME Snow Moderate 2 
14 Dec 95 IA Ice Moderate 3 
14 Dec 95 MI Rain Strong 3 
16 Dec 95 PA Snow Weak 3 
18 Dec 95 KY Rain Moderate 3 
20 Dec 95 ME Snow Weak 5 
30 Dec 95 OK Ice Moderate 3 
2 Jan 96  OK Snow Moderate 5 
4 Jan 96 IA Snow Weak 3 
7 Jan 96 TN Snow Weak 5 
7 Jan 96 VA Snow Moderate 3 
9 Jan 96 ME Snow Weak 1 
10 Jan 96 ME Snow Moderate 1 
13 Jan 96 MA Ice Moderate 3 
19 Jan 96 IA Snow Weak 5 
25 Jan 96 MN Snow Weak 3 
28 Jan 96 SD Snow Moderate 3 
29 Jan 96 NE Snow Weak 3 
30 Jan 96 ME Ice Weak 3 
31 Jan 96 SC Snow Moderate 4 
31 Jan 96 ME Rain Weak 5 
13 Nov 96 KS Ice Weak 3 
17 Nov 96 ND Snow Moderate 5 
21 Nov 96 IA Snow Weak 3 
26 Nov 96 NY Ice Moderate 3 
5 Feb 97 ME Ice Strong 2 
9 Feb 97 MD Snow Weak 5 
14 Feb 97 VA Ice Strong 5 
16 Feb 97 IA Snow Moderate 3 
26 Feb 97 TX Ice Weak 4 
7 Mar 97  ME Snow Moderate 1 
8 Mar 97 NY Snow Moderate 3 
10 Mar 97 MA Snow Moderate 2 
14 Mar 97 MI Ice Weak 3 
22 Mar 97 ME Snow Moderate 3 
31 Mar 97 PA Rain Weak 5 
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As with the first trial, chi-squared dependency tests were done to find the 

dependency of low-level shear with the precipitation types.  Tables 11, 12, and 13 

represent the tests for dependency using a chi-squared distribution (where the bold 

number represents the number of cases, the second number represents the expected value, 

and the last number represents the chi-square). 

 

Table 11.  Chi-squared distribution for the snow cases for Trial 2 where the bold 
number represents the number of cases, the second number represents the expected 

value, and the last number represents the chi-square. 
 

Snow Weak Shear Moderate Shear Strong Shear Total 
Lightning 3, 7.76, 2.92 9, 9.13, 0 9, 4.11, 5.82 21 
No Lightning 14, 9.24, 2.45 11, 10.87, 0 0, 4.89, 4.89 25 
Total 17 20 9 46 
 
Overall Chi-Square for Table 11:  16.09 
P-Value:  0.0003 
Degrees of Freedom:  2 
 
 

This test (Table 11) once again shows a strong association with low-level wind 

shear with a p-value of 0.0003.  With both Trials for snow passing with impressive 

results, low-level shear appears to be strongly associated for lightning development. 

 
Table 12.  Chi-squared distribution for the ice cases for Trial 2 where the bold 

number represents the number of cases, the second number represents the expected 
value, and the last number represents the chi-square. 

 
Ice Weak Shear Moderate Shear Strong Shear Total 
Lightning 2, 2.18, 0.02 5, 4.00, 0.25 1, 1.82, 0.37 8 
No Lightning 4, 3.82, 0.01 6, 7.00, 0.14 4, 3.18, 0.21 14 
Total 6 11 5 22 
 
Overall Chi-Square for Table 12:  1.00 
P-Value:  0.6080 
Degrees of Freedom:  2 
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This test fails due to a high value of p and because there are too few cases 

rendering it invalid (Table 12).  Even with the few cases categorized as they are, many 

doubts about low-level shear being a dependent factor for thunder with ice arise, 

especially when the small sample works against the previous trial and the hypothesis.  A 

suggestion for why there is a difference for ice as for snow will be discussed later on. 

 

Table 13.  Chi-Squared distribution for the rain cases for Trial 2 where the bold 
number represents the number of cases, the second number represents the expected 

value, and the last number represents the chi-square. 
 

Rain Weak Shear Moderate Shear Strong Shear Total 
Lightning 3, 4.80, 0.67 7, 5.40, 0.47 5, 4.80, 0.01 15 
No Lightning 5, 3.20, 1.01 2, 3.60, 0.71 3, 3.20, 0.01 10 
Total 8 9 8 25 
 
Overall Chi-Square for Table 13:  2.89 
P-value:  0.2353 
Degrees of Freedom:  2 
 
 

Like the ice’s second trial, this test (Table 13) lacks a sufficient number of cases 

to show anything.  With this one, the results did follow the first trial, but just not as 

closely as the snow events’ results.   

4.1.4) Combined Analysis 

Since the biggest problem during the two trials was having an insufficient number 

of cases, the trials were combined into one set for each precipitation type.  The chi-

squared test for each are done in the Tables 14, 15, and 16. 
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Table 14.  Chi-squared distribution for the snow cases for both trials where the bold 
number represents the number of cases, the second number represents the expected 

value, and the last number represents the chi-square. 
 
 

Snow Weak Shear Moderate Shear Strong Shear Total 
Lightning 3, 14.78, 9.39 16, 12.93, 0.73 15, 6.28, 12.10 34 
No Lightning 37, 25.22, 5.51 19, 22.07, 0.43 2, 10.72, 7.09 58 
Total 40 35 17 92 
 
Overall Chi-Square for Table 14:  35.24 
P-Value:  0.0000 
Degrees of Freedom:  2 
 
 

Overall, low-level wind shear appears to be a mechanism for thundersnow.  So 

far, no evidence suggests otherwise and a p-value of 0.0000 from Table 14 is rather 

convincing.  Final conclusion:  Low-level shear is strongly associated with thundersnow. 

 

Table 15.  Chi-squared distribution for the ice cases for both trials where the bold 
number represents the number of cases, the second number represents the expected 

value, and the last number represents the chi-square. 
 
 

Ice Weak Shear Moderate Shear Strong Shear Total 
Lightning 3, 6.67, 2.02 14, 13.81, 0 13, 9.52, 1.27 30 
No Lightning 11, 7.33, 1.83 15, 15.19, 0 7, 10.48, 1.15 33 
Total 14 29 20 63 
 
Overall Chi-Square for Table 15:  6.28 
P-Value:  0.0433 
Degrees of Freedom:  2 
 
 

Overall, low-level wind shear appears to be a strong factor, but something else 

also appears to play a role in inhibiting or producing lightning in the clouds that spawn 

freezing rain or sleet.  The only explanation is that the freezing level must extend above 

the zone of maximum vertical shear and vertical velocity resulting in mostly liquid 
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droplets as the colliding particles, which would reduce lightning generation.  Figure 13 

shows a visual idea of what may be happening.  Final conclusion:  Low-level shear is 

associated with thunder during ice events. 

 

Figure 13.  Schematic view of a cloud with a higher altitude level of freezing.  The thick circle represents a 
vorticity tube formed by shear.  The freezing line is drawn in to show the temperature profile of the 
stratiform cloud over the warm front.  The thick arrows represent flow around the vortex tube. 
 
 
 
Table 16.  Chi-squared distribution for the rain cases for both trials where the bold 
number represents the number of cases, the second number represents the expected 

value, and the last number represents the chi-square. 
 

 
Rain Weak Shear Moderate Shear Strong Shear Total 
Lightning 5, 9.70, 2.28 18, 13.94, 1.18 17, 16.36, 0.02 40 
No Lightning 11, 6.30, 3.50 5, 9.06, 1.82 10, 10.64, 0.04 26 
Total 16 23 27 66 
 
Overall Chi-Square for Table 16:  8.84 
P-Value:  0.0120 
Degrees of Freedom:  2 
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Overall, like the ice cases, shear appears to be a factor for lightning production in 

rain with temperatures between 33 and 37 degrees.  In Table 16, the number of strong 

shear cases that do not produce lightning is too high to suggest that shear plays the 

dominant role.  Again, the height of the freezing level may be a strong inhibiting factor 

for this precipitation type as well as seen in Figure 13.  The shear between 700 mb and 

850 mb may be something to examine during future work.  Final conclusion:  Low-level 

shear is slightly associated with lightning production during rain events with a surface 

temperature 37° F or colder. 

4.2) Temperature Correlation 

 The following histograms (Figure 14) show the temperatures for the precipitation 

types while thunder occurred.  The snow histogram is for all snow events (showery, 

intermittent, or continuous) and the ice histogram is for all ice and hail events (freezing 

rain/drizzle, sleet, snow pellets, graupel, or mixed).  The freezing rain is less on the above 

freezing side of the 32° F because freezing rain needs either subfreezing air or a 

subfreezing ground temperature. 
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Figure 14.  Temperature histograms for snow (left) and ice (right) with thunder occurrences.  For ice, the 
dark shade denotes freezing rain, while the light shade denotes sleet.  The 25 occurrences line is 
superimposed on the charts. 
 

 The overall synopsis is that lightning tends to be more frequent with increased 

temperature regardless of precipitation type.  The frequency with temperatures above 

freezing drops because frozen precipitation normally does not occur in temperatures too 

warm to support it.  All histograms seem to support such a notion (Figure 14).  This helps 

to show that the melting layer is present for almost every case and that moisture levels are 

higher in magnitude.   

Observing the snow cases finds a maximum of occurrences near the freezing point 

at the surface (Table 17).  This is helpful in showing that wet snow is present.  Also, this 

sample has the statistical mode at 34° F at the surface for snow, which indicates a wet 

snow is falling.  For this sample, 78 of the 137 cases (57%) occurred when the 

temperature was between 30° and 34° F.  Most cases occurred when the temperature was 

at or above 30° (93 of 137 or 68%).  Table 17 shows the frequency of thundersnow 

temperatures. 
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Table 17.  Frequency distribution of the thunder-temperature data for snow.  The 
highest frequency is in bold. 

 
Temperature 

°(F) 
Frequency Cumulative Percentage 

37 1 0.7 
36 6 5.1 
35 8 10.9 
34 27 30.7 
33 11 38.7 
32 22 54.7 
31 18 67.9 
30 9 74.5 
29 3 76.6 
28 10 83.9 
27 3 86.1 
26 2 87.6 
25 1 88.3 
24 0 88.3 
23 2 89.8 
22 0 89.8 
21 2 91.2 
20 0 91.2 
<20 12 100 

 

For ice with thunder, the same temperature regime took shape.  Table 18 shows 

the statistical mode occurring at 32° F with 40 occurrences (over 25% alone).  The 

numbers above 32° F are lower simply because freezing rain (the most frequent of the icy 

precipitation) is not a precipitation typically observed with a surface temperature above 

freezing.  There are a couple freezing rain observations that are observed above freezing, 

but for freezing rain to occur at these temperatures, the ground must be below freezing.  

For the ice though, 98.7% occurred above 23° F which is not as significant considering 
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that freezing rain and sleet rarely occur below that temperature, however, that number is 

most likely a higher percentage than the percentage of freezing rain/sleet occurrence 

without lightning below 24° F. 

 
Table 18.  Frequency distribution of the thunder-temperature data for ice.  The 

highest frequency is the bold number, and the temperatures of the two <24º F cases 
are in parentheses. 

 
Temperature 
°(F) 

Frequency Cumulative Percentage 

37 2 1.3 
36 9 7.0 
35 8 12.0 
34 18 23.4 
33 20 36.1 
32 40 61.4 
31 26 77.8 
30 9 83.5 
29 7 88.0 
28 7 92.4 
27 4 94.9 
26 2 96.2 
25 2 97.5 
24 2 98.7 
<24 2 (21°, 19°) 100 

 

Overall, for all thunder occurrences at or below 37° F, the frequency distribution 

in Table 19 looked the same as seen in Table 18, which is for all occurrences of thunder 

regardless of precipitation falling or precipitation type.  Once again, the mode is above 

freezing at 34° F (224 cases or 20.3% of all occurrences).  An interesting thing to note is 

the relative minima that occur in the data (Table 19) at 35º F and 33º F.  This is probably 

due to some temperature readings being recorded in Celsius then converted over to 

Fahrenheit.  This would mean that the all 0° C would convert to 32° F, all 1° C would 
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convert to 34° F, all 2° C would convert to 36° F, and all 3° C would convert to 37° F.  

Notice that 33° F and 35° F are not represented.  When examining the frequency 

distributions, all three have a relative minimum at these temperatures.  That may explain 

the maxima and minima that occur within the data. 

 

Table 19.  Frequency distribution for the thunder-temperature data for all events.  
The highest frequency is in bold. 

 
Temperature 
°(F) 

Frequency Cumulative Percentage 

37 39 3.5 
36 212 22.8 
35 177 38.8 
34 224 59.1 
33 116 69.6 
32 114 80.0 
31 65 85.9 
30 37 89.2 
29 24 91.4 
28 24 93.6 
27 16 95.0 
26 9 95.8 
25 4 96.2 
24 5 96.6 
23 5 97.1 
22 1 97.2 
21 4 97.6 
20 2 97.7 
<20 25 100 

 

4.3) Upper Air Soundings 

In order to find the -10° C level, which is considered to be a significant level, a 

small sample of upper air soundings were observed.  The temperature profiles for the 
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cases are in Table 20 where bold numbers represent 0°C or warmer temperatures and the 

numbers in italics represent the level of the -10° C temperature. 

 

Table 20.  Vertical sounding data for ten cases with the -10°°°° C level in italics, and 
the freezing or warmer temperatures (in Celsius) highlighted in bold script.  The 

pressure levels are along the top row (from 950 mb-500 mb), and the precipitation 
type is in the fifth column (RA for rain, SN for snow). 

 
 dd m yy Pcp 950 900 850 800 750 700 650 600 550 500 -10 
KS 11 4 97 RA 0 7 4 1 1 -2 -4 -7 -13 -17 575
KS 4 1 98 Ice -7 5 8 6 3 -2 -5 -10 -13 -18 580
KS 8 3 99 RA -2 -3 -1 4 3 0 -3 -7 -12 -18 575
KS 12 3 99 SN X -3 0 -1 1 -2 -6 -12 -16 -22 620
WI 27 2 96 Ice -7 3 5 5 -2 -4 -7 -12 -16 -22 625
AR 6 1 95 Ice -1 8 8 6 3 -1 -5 -9 -13 -19 590
OH 27 2 99 RA 5 10 8 5 0 -2 -4 -8 -13 -17 580
NE 10 4 95 RA -2 -3 8 6 3 -1 -3 -7 -12 -16 570
OK 4 1 98 RA 0 11 8 6 3 1 -3 -7 -12 -16 565
NE 8 3 99 SN -4 -5 -5 0 -2 -3 -6 -9 -13 -17 580
GA 9 1 97 RA -2 0 11 8 6 3 -1 -4 -8 -13 530
 
 

To find the vertical soundings used in Table 20, the raw surface observation data 

was scanned to find any occurrence of thunder within an hour of the vertical sounding 

times (00Z and 12 Z).  Only confirmed reports were used for this.  For all ten cases, the 

inversion reached the freezing mark at some level.  This helps to support the claim that 

snow is not the only hydrometeor found in the cloud and that wet snow is most likely 

falling. 
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4.4) Precipitable Water 

In an effort to examine the precipitable water, a small sample of cases were 

compared to find a dependency of precipitable water to lightning.  Table 21 shows the 

cases used (35 lightning, 35 non-lightning) for the comparison. 

 

Table 21.  Precipitable water (in inches) for 35 cases  in each category. 
 

Date Lightning  Date 
Non-
Lightning 

6-Jan-95 0.86  1-Jan-95 0.55
17-Jan-95 0.57  7-Jan-95 0.8
19-Jan-95 0.59  13-Jan-95 0.46
23-Jan-95 0.6  14-Jan-95 0.67
1-Feb-96 0.55  16-Jan-95 0.8

23-Feb-96 0.77  21-Jan-95 0.75
26-Feb-96 0.61  23-Jan-95 0.5
27-Feb-96 0.72  27-Jan-95 0.4

4-Jan-98 0.93  29-Jan-95 0.49
5-Jan-98 0.74  3-Feb-96 0.4
9-Jan-98 0.75  3-Feb-96 0.77

15-Jan-98 0.63  10-Feb-96 0.66
22-Jan-98 0.63  11-Feb-96 0.6
25-Feb-98 0.8  14-Feb-96 0.29

1-Jan-99 0.58  15-Feb-96 0.24
2-Jan-99 1.1  16-Feb-96 0.29
3-Jan-99 1.2  16-Feb-96 0.17
3-Jan-99 0.62  28-Feb-96 0.7
8-Jan-99 0.83  5-Jan-98 0.7

22-Jan-99 1.08  15-Jan-98 0.6
29-Jan-99 0.67  15-Jan-98 0.61
31-Jan-99 0.98  21-Jan-98 0.47
8-Feb-99 0.53  24-Jan-98 0.88

11-Feb-99 0.78  25-Jan-98 0.94
11-Feb-99 0.59  28-Jan-98 0.81
26-Feb-99 0.8  29-Jan-98 0.33
27-Feb-99 0.89  1-Feb-98 0.64

6-Mar-99 0.42  12-Feb-98 0.78
7-Mar-99 0.63  19-Feb-98 0.64
8-Mar-99 0.63  23-Feb-98 0.5

12-Mar-99 0.8  24-Feb-98 0.58
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Table 21 (cont.) 
 

Date Lightning  Date No-Lightning
14-Mar-99 0.6  25-Feb-98 0.77
15-Mar-99 0.93  28-Feb-98 0.52
22-Mar-99 0.58  8-Jan-99 0.08
23-Mar-99 0.57  28-Jan-99 0.41

 

The average precipitable water values were 0.57 inches for non-lightning and 0.73 

inches for lightning producing events.  Table 22 shows the results of the Chi-squared 

dependency test to this study where bold represents the frequency, the second number 

represents the chi-square, and the expected value is half the total in each bin. 

 

Table 22.  Chi-squared distribution for the precipitable water cases.  Bold 
represents the frequency and the second number represents the chi-square; the 

expected value is half the total in each bin.  
 
 0-0.2 0.21-0.4 0.41-0.6 0.61-0.8 0.81-1.0 1.01-1.2 Total 
Lightning 0 

1.00 
0 
3.00 

11 
0 

15 
0.17 

6 
0.2 

3 
1.50 

35 

No-
Lightning 

2 
1.00 

6 
3.00 

11 
0 

12 
0.17 

4 
0.2 

0 
1.5 

35 

Total 2 6 22 27 10 3 70 
(note:  Precipitable wter categories are in inches) 

 
Overall Chi-Square for Table 22:  11.73 
P-Value:  0.0386 
Degrees of Freedom:  5 
 
 

According to the chi-squared test in Table 22, precipitable water would be a 

dependent factor for a level of significance of 0.05 (95 % confidence).  From this data, a 

threshold value of 0.41 inches is necessary to produce lightning.  With a small number of 

cases, this statement holds little significance.   



  58

4.5) Summary 

 Overall, the tests to find some of the mechanisms associated with producing 

lightning during snow and ice events were successful.  The chi-square dependency tests 

for low-level shear to lightning showed a strong association with snow, an association 

with ice, and a slight association with rain.  Examining the temperatures at the surface 

showed surface temperature to be related in that lightning occurred most frequently 

within 2º F of freezing.  No apparent correlation stemmed from the   –10° C level study 

or the vertical temperature profiles (except for the possible influence of wet snow).  

Precipitable water also showed no significant association to lightning.  Chapter 5 will go 

into the detailed description of the results and the synthesis of them. 
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V.  Conclusions 

The results found from this study of the mechanisms associated with lightning in 

snow or icestorms show a strong association to low-level wind shear.  The divergence 

study showed no conclusive evidence due to the subjectivity and uncertainty of its 

calculation rendering the results invalid.  Precipitable water appears to have a slight 

correlation with lightning, but its effects were not thoroughly studied in this work.  The 

surface temperature study showed a strong relationship of lightning to surface 

temperature in that most events occur with 2º F of freezing for thundersnow, and 80% of 

all thunder events for snow, ice, and rain occurred when the temperature was at or above 

freezing (up to 37° F).  When examining the -10° C level, no apparent association was 

found from this level in this work.  The temperature profiles from the vertical soundings 

and surface temperatures did help to show the likelihood of wet snow and other types of 

hydrometeors, which have different fall speeds and drag coefficients.  Also, most 

thundersnow observations from the first set of data (the only set with the remarks section) 

reported wet snow or other forms of precipitation mixed with the snow.   

With the general knowledge of graupel and graupel charging, graupel does seem 

very important in the electrification process.  Overall, when considering that some 

thunderclouds are only as high as 5000 meters (Takeuchi et al. 1978), low level shear and 

above freezing temperatures in the low levels combine for the mixing of the different 

types of hydrometeors which should enhance cloud charge separation thus explaining 

how lightning develops in these mostly stratiform clouds, particularly in the convective 

regions (embedded thunderstorms) (Appendix C). 
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5.1) Synthesis 

Reverting back to the frontal circulation (Emanuel 1985), a circulation below 500 

mb is present along fronts.  The wind velocity difference between the 850 mb level and 

the ground, creates turbulent eddies along or near the frontal boundary.  These eddies, 

especially the ones within the cloud, are important in that they help to mix the different 

types of hydrometeors, thus increasing the charge separation.  The precipitation 

downdraft formed by the falling precipitation (especially wet snow) may help to enhance 

the frontal circulation (basically a large turbulent eddy) on the cold side while forming a 

bubble of high pressure at the surface similar to that of a thunderstorm.  This high helps 

to create a gust front (smaller magnitude compared to a summertime thunderstorm) that 

would force the warm moist air from the warm sector up and over the circulation.  Based 

on the vertical velocity that Sanders and Bosart (1985) found to be on the order of 12 m/s 

for the low-level circulation, this idea is feasible.  Since most thundersnow events are 

embedded convection within stratiform precipitation (Appendix C), the gust front 

interaction with the low-level jet may help to force the moisture upward.  This is 

important because the storm now has an updraft source and is able to generate many 

hydrometeors, including graupel.   

Another important influence of this upward forcing, providing that the vertical 

velocity is strong enough, is that graupel and snow pellets can be formed.  Graupel 

interaction in the cloud has been thought to be a major factor in cloud charging (Fukao 

1991) and has been observed in many cases of thundersnow.  Simpson (1909) observed 

graupel during thundersnow almost every time while observing it rarely during no-
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lightning events.  Graupel and snow pellets may be the reason that thundersnow is 

possible.   

A portion of this thesis shows a correlation of the surface temperatures to 

thundersnow.  These results help to show that lightning during snow and ice events 

occurred very close (within 100 km most of the time) to the rain-snow line or the melting 

layer.  This supports the idea of cloud charging via different hydrometeors with different 

shapes, sizes, and drag coefficients, thus different fall speeds allowing a higher rate of 

particle collision in the cloud.  When adding the turbulent eddies created by the low-level 

wind shear, these particles are thrown around and mixed to enhance the collision rate, 

which increases the charge separation.  Though the air at the surface is less likely to 

influence processes within the cloud, the turbulent eddies may mix the surface air with 

the lower part of the cloud. 

The precipitable water study showed a difference between lightning and no-

lightning cases.  These results may have been skewed by statistical outliers, but 

theoretically, stronger, lightning producing systems should have more moisture.  When 

applying the velocity increase due to the tunneling effect (or vertical convergence), the 

moisture is squeezed into a small area, which may account for the necessary moisture 

convergence.  When applying the frontal circulation effects, the increased vertical 

velocity on the warm side of the front provides a strong updraft on the order of 12 m/s 

(Sandera and Bosart 1985).  The combined effects of the increased velocity (increased 

updraft speed) and the moisture convergence should produce convection capable of 

producing lightning. 
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Curran and Pearson’s work in 1971 helps to support the hypothesis as well.  They 

found the average vertical sounding for thundersnow occurrence among 76 events and 

found that the inversion around 800 mb was above 32° F.  The small number of cases 

study in this work found temperatures above freezing at 800 mb as well.  This is 

significant in that it shows that different types of hydrometeors exist in the typical case of 

thundersnow (the above freezing layer indicates that the melting layer is over the station 

that reports the thundersnow).   

In conclusion, the vertical shear created by the strong low-level flow (typically on 

the order of 40+ knots) creates turbulent eddies that throw the cloud’s hydrometeors into 

one another, thus enhancing charge separation.  Another possible effect that low-level 

shear has is that it may help to enhance the frontal circulation, which is essentially one 

large turbulent eddy, along or near the front.  This circulation has an updraft that flows 

into the subfreezing air above 800 mb forming graupel.  As long as the freezing level is 

low enough heightwise to be in the strong part of the updraft, the graupel should be 

allowed to travel farther, thus growing larger through riming and aggregation.  This large 

graupel interacts as it falls with the other particles to add to the charge separation in the 

cloud.  Once the space charge density becomes large enough, lightning can occur.   

5.2) The Uncooperative Cases 

5.2.1) Discussion of the Snow Cases 

 In the thundersnow low-level shear study, two cases were observed with strong 

shear without producing lightning (two cases of no lightning verses 15 cases of lightning 

in strong shear).  These cases were the Ohio and Indiana snowstorm on 9 March 1999 
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and the Maine snowstorm on 5 Feb 95.  The March storm possibly produced one cloud-

to-ground flash according to the lightning data, but did not qualify for a thundersnow 

case because it was the only flash.  The Maine snowstorm did produce lightning in the 

snowfall from Virginia to Connecticut, but did not produce any lightning in Maine where 

snow with strong shear was recorded.   An interesting point to note is that Maine 

produced only one case of thundersnow (22 Feb 97, strong shear) compared to five non-

lightning cases in moderate shear and one non-lightning case in strong shear in Maine.  

When observing the minimal lightning activity in the Holle et al. (1998) thunder 

frequency plot, the knowledge that graupel over the sea has very little charge on it (Isono 

et al. 1966), and looking at Maine’s thundersnow frequency helps to support the effects 

of graupel to thundersnow.   

 When examining the three weak shear cases of thundersnow, all were in the 

Midwest (28 January 1997- MO, 23 November 1996-Nebraska, 4 March 1995- South 

Dakota (SD)).  The SD case had graupel reported on the radar summary while the other 

two are unknown as to whether they had graupel nearby.  So, based on the trend that has 

unfolded throughout this research, graupel and/or snow pellets appear to have a major 

role in thundersnow.  Another interesting point to note is that they had strong shear 

between the 700 mb level and the surface.  So, overall, the statistical oddities are not too 

damaging to the final results for shear. 

5.2.2) The Ice and Rain Cases 

 The effects of low-level wind shear are not as pronounced for these precipitation 

types as for snow.  For freezing rain and sleet, 7 of 20 total strong shear cases did not 

produce lightning, while 3 of 14 weak cases did produce lightning.  For rain with surface 
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temperatures between 33 and 37 degrees Fahrenheit, 10 of 27 strong shear cases failed to 

produce lightning, while 5 of 16 weak shear cases did produce lightning.  No apparent 

reasons are known as to why so many strong shear cases failed to produce lightning, 

other than maybe their inversion’s upper freezing level extended above the strongest 

vertical velocity zone (collision zone) to where most of the colliding particles where 

liquid water droplets colliding with other droplets.  When examining the vertical 

soundings for some cases, the freezing level was between 700 mb and 750 mb.  As for 

the weak cases, the strong low-level flow may have been above or below the 850 mb 

surface, so the shear between 850 mb and the surface will be lower despite having a 

strong low-level flow. 

5.3) Recommended Future Work 

Throughout this thesis, many small patterns appeared in terms of possible 

mechanisms that enhance the production of lightning.  These patterns were not examined 

thoroughly due to time constraints, however, other factors may also be involved.  They 

are as follows: 

1)  Search for evidence of different precipitation types occurring with 

thundersnow and examine the distances of the thundersnow occurrences from the melting 

layer.   

2)  Find the numerical values of upper-level divergence and examine the values of 

potential vorticity at all levels for the cases. 
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3)  Examine the 700 mb and 500 mb surfaces for shear.  A pattern is noticeable in 

the 500 mb surface with a drop off in the wind speed.  With the 700 mb surface, look for 

shear between it and the 850 mb surface. 

4)  Examine the vertical temperature profiles within the clouds to find the levels 

of the super freezing air and see where they are with respect to the low-level circulation. 

 5)  Examine the vertical velocity with height to see where the maximum vertical 

velocity values occur.   

 6)  Examine the effects of instability (conditional symmetric instability) in the 

upper-levels (300 mb cold pockets). 
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Appendix A. 

Listed below is the IDL computer program used to plot the lightning data used for 

this thesis (italics denote interchangeable features, bold denotes computer programs 

stored in the AFIT weather lab computer data base).  Any other modifications to the 

program (i.e., changing plotting symbols from a plus sign to a circle) can be referenced in 

IDL Programming manuel (Fanning, 1999). 

 
isolate_data 
 
openr, lun, ‘/home/fujita12/flash/lgh1999/mar99.lgh’,/get_lun 
a=fstat (lun) 
f=bytarr (11, a.size/11) 
n=a.size/11 
readu, lun, f 
close, lun 
 
f=exp_lgh(f) 
 
map_set, 0, -100, 0, limit=[25.0, -125.0, 50.0, -67.0], /hires, /usa, color=100,$ 
title=’mar99’ 
pos=where(f.peak GT 10.0, pcount) 
neg=where(f.peak LT 10.0, ncount) 
plots, f[pos].lon, f[pos].lat, psym=1, color=250 
plots, f[neg].lon, f[neg].lat, psym=2, color=250 
 
image=tvrd() 
write_gif, ‘mar99.gif’, image, r, g, b 
 
num=strcompress(sindgen(40), /remove_all) 
 
for I=0,30 do begin 
 
map_set, 0, -100, 0, limit=[25.0, -125.0, 50.0, -67.0], /hires, /usa, color=100,$ 
title=num(i)+1 
one=where(f.day EQ I+1, count) 
 
if (count GT 0) then begin 
pos=where (f.[one].peak GT 10.0, pcount) 
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neg= where (f.[one].peak LT 10.0, ncount) 
 
if (pcount GT 0)then $ 
plots, f[one[pos]].lon, f[one[pos]].lat, psym=1, color=150 
 
if (ncount GT 0)then $ 
plots, f[one[neg]].lon, f[one[neg]].lat, psym=2, color=150 
 
image=tvrd() 
write_gif, num(i)+’day.gif’, image, r, g, b 
 
end if 
 
end for 
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Appendix B 

Listed below are the state abbreviations used in the thesis. 
 
AR  Arkansas 
DE  Delaware 
GA  Georgia 
IL  Illinois 
IN  Indiana 
IA  Iowa 
KS  Kansas 
KY  Kentucky 
LA  Louisiana 
ME  Maine 
MD  Maryland 
MA  Massachusetts 
MI  Michigan 
MN  Minnesota 
MS  Mississippi 
MO  Missouri 
NE  Nebraska 
NH  New Hampshire 
NJ  New Jersey 
NY  New York 
NC  North Carolina 
ND  North Dakota 
OH  Ohio 
OK  Oklahoma 
ONT  Ontario (Canada) 
PA  Pennsylvania 
SD  South Dakota 
SC  South Carolina 
TN  Tennessee 
TX  Texas 
VT  Vermont 
VA  Virginia 
WV  West Virginia 
WI  Wisconsin 
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Appendix C 

 
The 26 October 1997 radar mosaic is shown in Figure 15.  The thunderstorms are 

embedded within the stratiform precipitation in eastern Nebraska and western Iowa.  

 

 
Figure 15.  Radar mosaic for 26 October 1997 at 0800.  The embedded thunderstorms are circled and 
labeled around Lincoln Nebraska. 
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